
AN INVERSE PROBLEM FOR A GENERAL DOUBLY-CONNECTED BOUNDED DOMAIN: AN EXTENSION TO HIGHER DIMENSIONS
Author(s) -
Elsayed M.E. Zayed
Publication year - 1997
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.28.1997.4305
Subject(s) - mathematics , bounded function , nabla symbol , domain (mathematical analysis) , combinatorics , laplace operator , boundary (topology) , omega , inverse , lambda , space (punctuation) , surface (topology) , eigenvalues and eigenvectors , mathematical analysis , geometry , physics , linguistics , philosophy , quantum mechanics , optics
The spectral function $\Theta(t)=\sum_{\nu=1}^\infty \exp(-t\lambda_\nu)$, where $\{\lambda_\nu\}_{\nu=1}^\infty$ are the eigenvalues of the negative Laplacian $-\nabla^2=-\sum_{i=1}^3(\frac{\partial}{\partial x_i})^2$ in the $(x^1, x^2, x^3)$-space, is studied for an arbitrary doubly connected bounded domain $\Omega$ in $R^3$ together with its smooth inner bounding surface $\tilde S_1$ and its smooth outer bounding surface $\tilde S_2$, where piecewise smooth impedance boundary conditions on the parts $S_1^*$, $S_2^*$ of $\tilde S_1$ and $S_3^*$, $S_4^*$ of $\tilde S_2$ are considered, such that $\tilde S_1=S_1^*\cup S_2^*$ and $\tilde S_2=S_3^*\cup S_4^*$.