
ON A CLASS OF MEROMORPHIC STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS
Author(s) -
K. K. Dixit,
Sanjit Pal
Publication year - 1996
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.27.1996.4369
Subject(s) - meromorphic function , mathematics , convexity , combinatorics , distortion (music) , convex function , unit (ring theory) , regular polygon , mathematical analysis , physics , geometry , amplifier , optoelectronics , mathematics education , cmos , financial economics , economics
Let $T^*_M(A, B, z_0)$ denote the class of functions \[f(z)=\frac{a}{z}-\sum_{n=1}^\infty a_nz^n, a\ge 1, a_n\ge 0\] regular and univalent in unit disc $U'=\{z:0<|z|<1\}$,satisfying the condition \[-z\frac{f'(z)}{f(z)}=\frac{1+Aw(z)}{1+Bw(z)}, \quad \text{ for } z\in U' \text{ and } w\in E\](where $E$ is the class of analytic functions $w$ with $w(0) = 0$ and $|w(z)| \le 1$), where $-1\le A < B \le 1$, $0\le B \le 1$ and $f(z_0) =1/z_0$ ($0<z_0<1$). In this paper sharp coefficient estimates, distortion properties and radius of meromorphic convexity for functions in $T^*_M(A, B, z_0)$ have been obtained. We also study integral transforms of functions in $T^*_M(A, B, z_0)$. In the last, it is proved that the class $T^*_M(A, B, z_0)$ is closed under convex linear combinations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom