z-logo
open-access-imgOpen Access
ON A CLASS OF MEROMORPHIC STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS
Author(s) -
K. K. Dixit,
Sanjit Pal
Publication year - 1996
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.27.1996.4369
Subject(s) - meromorphic function , mathematics , convexity , combinatorics , distortion (music) , convex function , unit (ring theory) , regular polygon , mathematical analysis , physics , geometry , amplifier , optoelectronics , mathematics education , cmos , financial economics , economics
Let $T^*_M(A, B, z_0)$ denote the class of functions \[f(z)=\frac{a}{z}-\sum_{n=1}^\infty a_nz^n, a\ge 1, a_n\ge 0\] regular and univalent in unit disc $U'=\{z:0<|z|<1\}$,satisfying the condition \[-z\frac{f'(z)}{f(z)}=\frac{1+Aw(z)}{1+Bw(z)}, \quad \text{ for } z\in U' \text{ and } w\in E\](where $E$ is the class of analytic functions $w$ with $w(0) = 0$ and $|w(z)| \le 1$), where $-1\le A < B \le 1$, $0\le B \le 1$ and $f(z_0) =1/z_0$ ($0<z_0<1$). In this paper sharp coefficient estimates, distortion properties and radius of meromorphic convexity for functions in $T^*_M(A, B, z_0)$ have been obtained. We also study integral transforms of functions in $T^*_M(A, B, z_0)$. In the last, it is proved that the class $T^*_M(A, B, z_0)$ is closed under convex linear combinations.      

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom