z-logo
open-access-imgOpen Access
RINGS WITH A JORDAN DERIVATION WHOSE IMAGE IS CONTAINED IN THE NUCLEI OR COMMUTATIVE CENTER
Author(s) -
Chen-Te Yen
Publication year - 1997
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.27.1996.4343
Subject(s) - mathematics , associative property , prime (order theory) , commutative property , center (category theory) , commutative ring , ring (chemistry) , combinatorics , integer (computer science) , prime ring , image (mathematics) , pure mathematics , crystallography , chemistry , organic chemistry , artificial intelligence , computer science , programming language
Let $R$ be a nonassociative ring, $N$, $L$ and $G$ the left nucleus, right nucleus and nucleus respectively. It is shown that if $R$ is a prime ring with a Jordan derivation d such that $d(R) \subseteq G$ and $(d^2 R), R) \subseteq N$ or $(d^2(R), R) \subseteq L$ then either $R$ is associative or $2d^2 =0$. Moreover. if $(d(R), R) =0$ then either $R$ is associative and commutative or $2d =0$. We also prove that if $R$ is a prime ring with a derivation $d$ and there exists a fixed positive integer $n$ such that $d^n(R) \subseteq G$ and $(d^n(R), R) =0$ then $R$ is associative and $d^n =0$, or $R$ is associative and commutative, or $d^{2n} = (\frac{(2n)!}{n!})d^n = 0$. This partially generalize the results of [3]. We also obtain some results on prime rings with a derivation satisfying other hypotheses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here