
GLOBAL ATTRACTIVITY IN A NONAUTONOMOUS DELAY-LOGISTIC EQUATION
Author(s) -
Jianhua Shen,
Zhicheng Wang
Publication year - 1995
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.26.1995.4393
Subject(s) - mathematics , conjecture , attractor , logistic function , mathematical analysis , pure mathematics , combinatorics , discrete mathematics , statistics
Consider the nonautonomous delay-Logistic equation \[x'(t)=r(t)x(t)[1-b_1x(t-\tau_1)-b_2x(t-\tau_2)], \quad t\ge 0.\]We obtain sufficient conditions for the positive steady state $x^* =1/(b_1+b_2)$ to be a global attractor. An application of our result also solves a conjecture of Gopalsamy.