
REPRESENTATION OF PRIMES BY THE PRINCIPAL FORM OF NEGATIVE DISCRIMINANT $\Delta$ WHEN $h(\Delta)$ IS 4
Author(s) -
Kenneth S. Williams,
D. Liu
Publication year - 1994
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.25.1994.4461
Subject(s) - mathematics , discriminant , delta , congruence (geometry) , combinatorics , prime (order theory) , order (exchange) , integer (computer science) , geometry , physics , finance , astronomy , artificial intelligence , computer science , economics , programming language
Let $\Delta$ be a negative integer which is congruent to 0 or 1 (mod 4). Let $H(\Delta)$ denote the form class group of classes of positive-definite, primitive integral binary quadratic forms $ax^2 +bxy +cy^2$ of discriminant $\Delta$. If $H(\Delta)$ is a cyclic group of order 4, an explicit quartic polynomial $\rho \Delta(x)$ of the form $x^4-bx^2 +d$ with integral coefficients is determined such that for an odd prime $p$ not dividing $\Delta$, $p$ is represented by the principal form of discriminant $\Delta$ if and only if the congruence $\rho \Delta(x) \equiv 0$ (mod $p$) has four solutions.