
RINGS WITH A DERIVATION WHOSE IMAGE IS CONTAINED IN THE NUCLEI
Author(s) -
Chen-Te Yen
Publication year - 1994
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.25.1994.4458
Subject(s) - mathematics , associative property , prime (order theory) , ring (chemistry) , image (mathematics) , combinatorics , nucleus , pure mathematics , computer science , artificial intelligence , chemistry , organic chemistry , biology , microbiology and biotechnology
Let $R$ be a nonassociative ring, $N$, $M$, $L$ and $G$ the left nucleus, middle nucleus, right nucleus and nucleus respectively. Suh [4] proved that if $R$ is a prime ring with a derivation dsuch that $d(R) \subseteq G$ then either $R$ is associative or $d^3 =0$. We improve this result by concluding that either $R$ is associative or $d^2 =2d =0$ under the weaker hypothesis $d(R)\subseteq N$\cap M$ or $d(R)\subseteq N\cap M$ or $d(R)\subseteq M\cap L$. Using our result, we obtain the theorems of Posner [3] and Yen [11] for the prime nonassociative rings. In our recent papers we partially generalize the above main result.