
COEFFICIENT ESTIMATES FOR BOUNDED STARLIKE FUNCTIONS OF COMPLEX ORDER
Author(s) -
M. K. Aouf
Publication year - 1994
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.25.1994.4433
Subject(s) - order (exchange) , mathematics , combinatorics , integer (computer science) , bounded function , mathematical analysis , finance , computer science , economics , programming language
Let $F(b,M,n)$($b\neq 0$, complex, $M >1/2$, and $n$ is a positive integer) denote the classof functions $f(z)=z+\sum_{k=n+1}^\infty a_kz^k$ analytic in $U=\{z: |z|< 1\}$ which satisfy for fixed $M$, $f (z)/z \neq 0$ in $U$ and \[ \left|\frac{b-1+\frac{zf'(z)}{f(z)}}{b}-M\right|<M, \quad z\in U.\]Also let $F^*(b,M,n)$ ($b\neq 0$, complex, $M >1/2$, and $n$ is a positive integer) denote the class of functions $f(z)=1/z+\sum_{k=n}^\infty a_kz^k$ analytic in the annulus $U^* = \{z : 0 < |z| < 1\}$ which satisfy \[ \left|\frac{b-1+\frac{zf'(z)}{f(z)}}{b}-M\right|<M, \quad z\in U^*.\]In this paper we obtain bounds for the coefficients of functions of the above classes.