z-logo
open-access-imgOpen Access
COEFFICIENT ESTIMATES FOR BOUNDED STARLIKE FUNCTIONS OF COMPLEX ORDER
Author(s) -
M. K. Aouf
Publication year - 1994
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.25.1994.4433
Subject(s) - order (exchange) , mathematics , combinatorics , integer (computer science) , bounded function , mathematical analysis , finance , computer science , economics , programming language
Let $F(b,M,n)$($b\neq 0$, complex, $M >1/2$, and $n$ is a positive integer) denote the classof functions $f(z)=z+\sum_{k=n+1}^\infty a_kz^k$ analytic in $U=\{z: |z|< 1\}$ which satisfy for fixed $M$, $f (z)/z \neq 0$ in $U$ and \[ \left|\frac{b-1+\frac{zf'(z)}{f(z)}}{b}-M\right|<M, \quad z\in U.\]Also let $F^*(b,M,n)$ ($b\neq 0$, complex, $M >1/2$, and $n$ is a positive integer) denote the class of functions $f(z)=1/z+\sum_{k=n}^\infty a_kz^k$ analytic in the annulus $U^* = \{z : 0 < |z| < 1\}$ which satisfy \[ \left|\frac{b-1+\frac{zf'(z)}{f(z)}}{b}-M\right|<M, \quad z\in U^*.\]In this paper we obtain bounds for the coefficients of functions of the above classes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here