
SUBMANIFOLDS OF EUCLIDEAN SPACES SATISFYING $\Delta H =AH$
Author(s) -
BangYen Chen
Publication year - 1995
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.25.1994.4427
Subject(s) - mathematics , totally geodesic , pure mathematics , biharmonic equation , mathematical analysis , mean curvature , lambda , curvature , combinatorics , geometry , physics , optics , boundary value problem
In [5] the author initiated the study of submanifolds whose mean curvature vector $H$ satisfying the condition $\Delta H =\lambda H$ for some constant $\lambda$ and proved that such submanifolds are either biharmonic or of 1-type or of null 2-type. Submanifolds of hyperbolic spaces and of de Sitter space-times satisfy this condition have been investigated and classified in [6,7]. In this article, we study submanifolds of $E^m$ whose mean curvature vector $H$ satisfies a more general condition; namely, $\Delta H =AH$ for some $m \times m$ matrix $A$.