
GROUP RINGS WITH STRONGLY 2-GENERATED AUGMENTATION IDEALS
Author(s) -
R. Salem
Publication year - 1993
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.24.1993.4474
Subject(s) - mathematics , group (periodic table) , cyclic group , ideal (ethics) , combinatorics , group ring , field (mathematics) , finite group , perfect group , alternating group , pure mathematics , symmetric group , g module , chemistry , abelian group , philosophy , epistemology , organic chemistry
Suppose that $G$ is a finite supersolvable (infinite solvable) group, $K$ is a field of char $p>0$. Then the Augmentation ideal $w(K[G])$ is right strongly 2-generated iff $G$ is a $p'$-group-by-cyclic $P$-group (finite $p'$-group-by-infinite cyclic).