
OPERATORS ON BANACH ALGEBRA VALUED FUNCTION SPACES
Author(s) -
Jor-Ting Chan
Publication year - 1992
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.23.1992.4546
Subject(s) - mathematics , banach algebra , hausdorff space , bounded function , pure mathematics , banach space , finite rank operator , algebra over a field , locally compact space , approximation property , discrete mathematics , mathematical analysis
Let $S$ be a locally compact Hausdorff space and let $A$ be a Banach algebra. Denote by $C_0(S, A)$ the Banach algebra of all $A$-valued continuous functions vanishing at infinity on $S$. Properties of bounded linear operators on $C_0(S,A)$, like multiplicativity, are characterized by Choy in terms of their representing measures. We study these theorems and give sharper results in certain cases.