
CERTAIN CLASSES OF MEROMORPHIC MULTIVALENT FUNCTIONS
Author(s) -
B. A. Uralegaddi,
C. Somanatha
Publication year - 1992
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.23.1992.4545
Subject(s) - mathematics , combinatorics , product (mathematics) , meromorphic function , integer (computer science) , closure (psychology) , mathematical analysis , geometry , computer science , economics , market economy , programming language
Let \[ f(z) =\frac{1}{z^p}+\sum_{n=1}^\infty \frac{a_{n-1}}{z^{p-n}} \] be regular in the punctured disk $E =\{z: 0<|z|<1\}$ and \[ D^{n+p-1}f(z)=\frac{1}{z^p(1-z)^{n+p}}*f(z) \]where $*$ denotes the Hadamard product and $n$ is any integer greater than $- p$. For $- 1 \le B < A \le 1$, let $C_{n,p}(A, B)$ denote the class of functions $f(z)$ satisfying \[-z^{p+1}(D^{n+p-1}f(z))'<p\frac{1+Az}{1+Bz}\]This paper establishes the property $C_{n+1,p}(A,B) \subset C_{n,p}(A,B)$. Fur ther property preserving integral operators, coefficient inequalities and a closure theorem for these classes are obtained. Our results generalise some of the recent results of Ganigi and Uralegaddi [1].