
ON SUBCLASSES OF P-VALENT CLOSE-TO-CONVEX FUNCTIONS
Author(s) -
M. K. Aouf
Publication year - 1991
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.22.1991.4586
Subject(s) - combinatorics , mathematics , distortion (music) , regular polygon , convex function , physics , geometry , amplifier , optoelectronics , cmos
Let $K[C,D,p, \alpha]$, $- 1 \le D <C \le 1$ and $0\le \alpha <p$ denote the class of functions \[ g(z) =z^p+\sum_{n=p+1}^\infty b_nz^n \]analytic in the unit disc $U =\{z:|z|<1\}$ and satisfying the condition $1+\frac{zg''(z)}{g'(z)}$ is subcoordinate to $\frac{p+[pD+(C-D)(p-\alpha)]z}{1+Dz}$. We investigate the subclass of p-valent close-to-convex functions \[ f(z) =z^p+\sum_{n=p+1}^\infty a_nz^n, \]for which there exists $g(z)\in K[C,D,p, \alpha]$ such that $\frac{pf'(z)}{g'(z)}$ is subcoordinate to $\frac{p+[pB+(A-B)(p-\beta)]z}{1+Bz}$, $- 1 \le B <A \le 1$ and $0\le \beta <p$ . Distortion and rotation theorems and coefficient bounds are obtained.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom