
COMPLETE SURFACES IN $E^3$ WITH CONSTANT MEAN CURVATURE
Author(s) -
M. Burak Erdoğan,
Tsutomu Itoh
Publication year - 1991
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.22.1991.4576
Subject(s) - mathematics , gaussian curvature , mean curvature , constant (computer programming) , curvature , sign (mathematics) , center of curvature , radius of curvature , mathematical analysis , point (geometry) , geometry , gaussian , mean curvature flow , physics , quantum mechanics , computer science , programming language
We give a classification of surfaces in $E^3$ with constant mean curvature and the Gaussian curvature $K$ not changing its sign around some point at which $K$ vanishes.