
ON SUBCLASSES OF STARLIKE FUNCTIONS OF ORDER $\alpha$ AND TYPE $\beta$
Author(s) -
M. K. Aouf
Publication year - 1990
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.21.1990.4693
Subject(s) - combinatorics , mathematics , order (exchange) , beta (programming language) , convexity , type (biology) , ecology , finance , computer science , financial economics , economics , biology , programming language
Let $S^*(\alpha, \beta, A, B) (0\le \alpha<1, 0<\beta\le 1, -1\le A <S\le 1, 0<B\le 1)$, denote the class of functions $f(z) = z+ \sum_{n=2}^\infty a_nz^n$ analytic in $U = \{z : |z|< 1\}$ which satisfy for $z=re^{i\theta}\in U$,\[ \left|\frac{z\frac{f'(z)}{f(z)}-1}{(B-A)\beta\left(z\frac{f'(z)}{f(z)}-\alpha\right)+A\left(z\frac{f'(z)}{f(z)}-1\right)}\right|<1.\]It is the purpose of this paper to show a representation formula, a distortion theo- rem, a sufficient condition for this class $S^*(\alpha, \beta, A, B)$. Furthermore, we maximize $|a_3-\mu a_2^2|$ over the class $S^*(\alpha, \beta, A, B)$ and we give the radii of convexity for functions in the class $S^*(\alpha, \beta, A, B)$.