z-logo
open-access-imgOpen Access
Synthesis and Electrochemical Performance of Spinel Crystal Structured ((FeNiCrMn)1-xCox)3O4 (x=0.1, 0.2, 0.3) High Entropy Oxides
Author(s) -
Meltem CAYIRLI,
Esra ERDOGAN-ESEN,
Ersu LOKCU,
Mustafa Anık
Publication year - 2021
Publication title -
the eurasia proceedings of science, technology, engineering and mathematics
Language(s) - English
Resource type - Journals
ISSN - 2602-3199
DOI - 10.55549/epstem.1068579
Subject(s) - spinel , anode , electrochemistry , materials science , oxide , analytical chemistry (journal) , chemical engineering , electrode , chemistry , metallurgy , chromatography , engineering
High entropy oxides are a new class of materials with a single-phase structure consisting of five or more components. Due to their high structural stability and electrochemical performance, they have attracted a lot of attention in recent years. In this study, high entropy oxides with the composition ((FeNiCrMn)1-xCox)3O4 (x=0.1, 0.2, 0.3) were synthesized using the solid state method and their electrochemical performances as anode material for lithium-ion battery were investigated. Spinel crystal structured of high entropy oxides were characterized by X-ray diffraction (XRD) technique. The electrochemical performance of anodes were evaluated by assembling CR2016 type coin cell. As a result of galvanostatic charge/discharge experiments the initial discharge capacities of ((FeNiCrMn)1-xCox)3O4 (x=0.1, 0.2, 0.3) anodes at a current density of 50 mA g-1 werecalculated as 1993 mA h g-1, 1651 mA h g-1 and 1706 mA h g-1, respectively. Among the synthesized high entropy oxide anodes, the ((FeNiCrMn)0.9Co0.1)3O4 anode shows high initial discharge capacity, while their capacity retention rates at the end of 10th cycle were calculated as 53.9%, 55.1%, 59.7%. This study clearly indicates that the electrochemical performances of high entropy oxide anodes are affected by the Co content.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here