z-logo
open-access-imgOpen Access
Application of Artificial Neural Networks Using Bayesian Training Rule in Sales Forecasting for Furniture Industry
Author(s) -
Melih Yücesan,
Muhammet Gül,
Erkan Erkan
Publication year - 2017
Publication title -
drvna industrija
Language(s) - English
Resource type - Journals
eISSN - 1847-1153
pISSN - 0012-6772
DOI - 10.5552/drind.2017.1706
Subject(s) - artificial neural network , bayesian probability , training (meteorology) , machine learning , artificial intelligence , computer science , engineering , data mining , meteorology , physics
Most organizations in manufacturing environments aim to increase their profi ts and reduce costs against competitive and rapidly changing market conditions. Accuracy of sales forecasting is undoubtedly a successful way to reach the aforementioned goals. At the same time, this enables executives to improve customer satisfaction, reduce lost sales and plan production efficiently. As a growing industry in Turkey, furniture manufacturing has an increased product demand in relation to the recent growth in construction and related industries, increase in urban population and increase in person-level income. Therefore, accurate sales forecasting systems in this industry are more focused on the special and calendar factors, such as consumer confidence index, producer price index, time of the year and number of vacation days. In this paper, an artificial neural network (ANN) based forecasting model is proposed by using MATLAB for processing total monthly sales data of a corporate furniture manufacturer located in the Black Sea region of Turkey. The method is a component of ANN, namely Bayesian regularization. The proposed model is applied to monthly sales figures of a corporate furniture manufacturing company. In conclusion, the results of performance measures show that using the ANN model based on Bayesian rules training is an applicable choice for forecasting of monthly sales of the observed furniture factory.Cilj većine proizvodnih organizacija jest povećanje dobiti i smanjenje troškova u skladu s konkurentnim i promjenjivim tržišnim uvjetima. Točnost predviđanja prodaje nesumnjivo je uspješan način postizanja navedenih ciljeva. Istodobno, to povećava zadovoljstvo korisnika, učinkovito smanjuje izgubljenu prodaju i omogućuje bolje planiranje proizvodnje. U proizvodnji namještaja, industriji koja se u Turskoj sve jače razvija, bilježi se povećana potražnju proizvoda, u skladu s nedavnim rastom građevinskih i srodnih industrija, s povećanjem broja urbanog stanovništva i s rastom osobnih prihoda. Stoga precizni sustavi predviđanja prodaje u industriji namještaja više pozornosti usmjeravaju na posebne i kalendarske čimbenike poput indeksa povjerenja potrošača, indeksa proizvođačkih cijena, doba godine i broja dana odmora u godini. U ovom je radu predložen model predviđanja na temelju umjetne neuronske mreže (ANN) uz pomoć MATLAB-a za obradu podataka ukupne mjesečne prodaje proizvođača uredskog namještaja koji se nalazi u Crnomorskoj regiji u Turskoj. Metoda je komponenta ANN-a, tj. Bayesova regulacija. Predloženi se model primjenjuje na podatke o mjesečnoj prodaji tvrtke za proizvodnju uredskog namještaja. Zaključno, rezultati mjerenja uspješnosti pokazuju da je primjena ANN modela utemeljenoga na Bayesovim pravilima dobar izbor za prognoziranje mjesečne prodaje promatrane tvornice namještaja

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here