On Filter $(\alpha)$-convergence and Exhaustiveness of Function Nets in Lattice Groups and Applications
Author(s) -
Antonio Boccuto,
Xenofon Dimitriou
Publication year - 2015
Publication title -
journal of mathematics research
Language(s) - English
Resource type - Journals
eISSN - 1916-9809
pISSN - 1916-9795
DOI - 10.5539/jmr.v7n2p56
Subject(s) - mathematics , pointwise , pointwise convergence , filter (signal processing) , lattice (music) , context (archaeology) , discrete mathematics , pure mathematics , combinatorics , topology (electrical circuits) , mathematical analysis , network topology , computer science , paleontology , physics , acoustics , computer vision , biology , operating system
We consider (strong uniform)continuity of thelimit of a pointwise convergent net of latticegroup-valued functions, (strong weak)ex\-hau\-sti\-ve\-ness and (strong)$(\alpha)$-con\-ver\-gen\-ce with respect to a pairof filters, which in the setting of nets aremore natural than the corresponding notionsformulated with respect to a single filter. Somecomparison results are givenbetween such concepts, inconnection with suitable properties of filters.Moreover, some modes of filter(strong uniform) continuity for lattice group-valuedfunctions are investigated, givingsome characterization.As an application, we getsome Ascoli-type theorem in an abstract setting,extending earlier results to the context of filter$(\alpha)$-con\-ver\-gen\-ce.Furthermore, we pose some open problems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom