z-logo
open-access-imgOpen Access
New Types of Fuzzy Filter on Lattice Implication Algebras
Author(s) -
Yi Liu,
Yang Xu
Publication year - 2011
Publication title -
journal of mathematics research
Language(s) - English
Resource type - Journals
eISSN - 1916-9809
pISSN - 1916-9795
DOI - 10.5539/jmr.v3n1p57
Subject(s) - mathematics , overline , lattice (music) , combinatorics , fuzzy logic , wedge (geometry) , discrete mathematics , geometry , physics , artificial intelligence , particle physics , computer science , acoustics
Extending the {it belongs} to ($in$) relation and {it quasi-coincidence with}($q$) relation between fuzzy points and a fuzzy subsets, the concept of $(alpha, eta)$-fuzzy filters and $(overline{alpha}, overline{eta})$-fuzzy filters of lattice implication algebras are introduced, where $alpha,etain{in_{h},q_{delta},in_{h}vee q_{delta},in_{h}wedge q_{delta}}$, $overline{alpha},overline{eta}in{overline{in_{h}},overline{q_{delta}},overline{in_{h}}vee overline{q_{delta}},overline{in_{h}}wedge overline{q_{delta}}}$ but $alphaeq in_{h}wedge q_{delta}$, $overline{alpha}eqoverline{ in_{h}}wedge overline{q_{delta}}$, respectively,  and some related properties are investigated. Some equivalent characterizations of these generalized fuzzy filters are derived. Finally, the relations among these generalized fuzzy filters are discussed. Special attention to $(in_{h},in_{h}vee q_{delta})$-fuzzy filter and $(overline{in_{h}},overline{in_{h}}veeoverline{q_{delta}})$-fuzzy filter are generalizations of $(in,invee q)$-fuzzy filter and $(overline{in},overline{in}vee overline{q})$-fuzzy filter, respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom