
Comparison of Soil Biological Properties and Bacterial Diversity in Sugarcane, Soybean, Mung Bean and Peanut Intercropping Systems
Author(s) -
Shangdong Yang,
Jian Xiao,
Ziyue Huang,
Renliu Qin,
Weiming He,
Limin Liu,
Hongjian Liu,
Ao-Mei Li,
Huachun Tan
Publication year - 2021
Publication title -
journal of agricultural science
Language(s) - English
Resource type - Journals
eISSN - 1916-9760
pISSN - 1916-9752
DOI - 10.5539/jas.v13n8p54
Subject(s) - intercropping , monoculture , agronomy , arachis hypogaea , vigna , biology , soil fertility , radiata , soil water , ecology
Sugarcane intercropping with soybean [Glycine max (Linn.) Merr.], mung bean [Vigna radiata (Linn.) Wilczek] and peanut (Arachis hypogaea Linn.) as well as a sugarcane monoculture were conducted to study the impacts of intercropping on soil biological characteristics and bacterial diversity. The results showed that soil cultivable microorganisms, the activities of soil enzymes and microbial biomass carbon, nitrogen, and phosphorus were all significantly improved by intercropping with soybean and mung bean. Additionally, soil bacterial diversity and richness in sugarcane fields were also significantly enhanced by intercropping with soybean and mung bean. In addition, soil bacterial community structures in sugarcane fields can be altered by intercropping with different legumes. Proteobacteria, a high-nutrient-tolerant bacterial assemblage, became the dominant bacteria in the sugarcane-soybean and sugarcane-mung bean intercropped soils. Twenty four, 28, 26 and 27 dominant soil bacterial genera were found after the sugarcane-soybean, sugarcane-mung bean, sugarcane-peanut and sugarcane monoculture treatments, respectively. Sugarcane-mung bean intercropping being the most promising system for regaining and improving soil fertility and soil heath and facilitate agriculture intensification of sugarcane.