z-logo
open-access-imgOpen Access
Weed Management in White Bean With Pre-plant Incorporated Herbicides
Author(s) -
Nader Soltani,
Christy Shropshire,
Peter H. Sikkema
Publication year - 2021
Publication title -
journal of agricultural science
Language(s) - English
Resource type - Journals
eISSN - 1916-9760
pISSN - 1916-9752
DOI - 10.5539/jas.v13n10p1
Subject(s) - trifluralin , metolachlor , lambsquarters , weed control , agronomy , ragweed , harrow , horticulture , weed , biology , chenopodium , atrazine , pesticide , allergy , immunology
Five field experiments were conducted in Ontario Canada during 2018-2020 to determine the level of crop injury, weed control and white bean yield with up to four-way mixtures of herbicides applied preplant incorporated (PPI). The trials were arranged in a factorial design: Factor 1 was “Grass herbicide” including no grass herbicide, trifluralin, S-metolachlor and trifluralin + S-metolachlor and Factor 2 was “Broadleaf herbicide” including no broadleaf herbicide, halosulfuron, imazethapyr and halosulfuron + imazethapyr. At 2 and 4 weeks after emergence (WAE), there was minimal (≤ 4%) white bean injury. At 8 weeks after herbicide application (WAA), trifluralin, S-metolachlor or trifluralin + S-metolachlor averaged across Factor 2 controlled velvetleaf 69, 71 and 62%, respectively; halosulfuron, imazethapyr and halosulfuron + imazethapyr averaged across Factor 1 controlled velvetleaf 75, 95 and 97%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled pigweed 93, 90 and 97%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled pigweed 97, 79 and 98%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor provided poor (≤ 32%) control of common ragweed while halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled common ragweed 86, 53 and 87%, respectively. The 4-way tankmix of trifluralin, S-metolachlor, halosulfuron + imazethapyr controlled common ragweed 95%. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled common lambsquarters 81, 38 and 91%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled common lambsquarters 94, 97 and 99%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor provided poor (≤ 46%) control of wild mustard while halosulfuron, imazethapyr and halosulfuron + imazethapyr provided excellent (≥ 97%) wild mustard control. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled barnyardgrass 70, 85 and 94%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled barnyardgrass 9, 50 and 59%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled green foxtail 89 to 98% and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled green foxtail 19, 69 and 67%, respectively. Weed interference reduced white bean yield 76%. Generally, white bean yield reflected the level of weed control. Based on these results, the 2- and 3-way tankmixes of herbicides evaluated generally provide similar weed control as the 4-way tankmixes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here