
Diagnosing of the presence of liquid inclusions in the gas pipelines
Author(s) -
G. G. Ismayilov,
AUTHOR_ID,
Ramiz A. Ismailov,
F. N. Аhmadzada,
AUTHOR_ID,
AUTHOR_ID
Publication year - 2021
Publication title -
elmi əsərlər
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.409
H-Index - 11
eISSN - 2218-8622
pISSN - 2218-6867
DOI - 10.5510/ogp2021si100518
Subject(s) - pipeline transport , non equilibrium thermodynamics , natural gas , pipeline (software) , relaxation (psychology) , petroleum engineering , mechanics , flow (mathematics) , inclusion (mineral) , environmental science , materials science , thermodynamics , statistical physics , chemistry , physics , geology , engineering , mechanical engineering , environmental engineering , psychology , social psychology , organic chemistry
Due to the insufficiently effective gas drying in preparing it for further transport on the main pipeline in the composition of the gas remains a sufficient amount of fluid. The presence of liquid inclusions in the transported streams causes a nonequilibrium behavior of such systems, which is not taken into account in traditional calculation methods and increases the calculation error. Therefore, to select an adequate transfer mode, it is necessary to diagnose the internal structure of natural gas systems, which is the main task of studying this article. In working on the basis of a generalized model of motion of the relaxation medium in the pipeline by the introduction of the equation of the state for nonequilibrium gases, the calculated ratios are obtained to estimate the hydraulic and nonequilibrium parameters of the gas flow. In order to numerically implement these relations, a computational algorithm was drawn up and on the basis of the operational data of the actual gas pipeline obtained appropriate estimates. The results of the calculations were shown that both the density and the pressure relaxation times are rather significant. This indicates the presence of liquid inclusions in the transport stream. Thus, the authors proposed a numerically implemented procedure for diagnosing the presence of liquid inclusions in natural gases, which can be recommended for the use of services engaged in the operation of main gas pipelines. Keywords: natural gas; gas pipeline; liquid inclusions; model; diagnostics.