
Diabetes Prediction Using Machine Learning Techniques
Author(s) -
Seyma Kiziltas Koc,
Mustafa Yeniad
Publication year - 2021
Publication title -
akıllı sistemler ve uygulamaları dergisi
Language(s) - English
Resource type - Journals
ISSN - 2667-6893
DOI - 10.54856/jiswa.202112183
Subject(s) - machine learning , artificial intelligence , naive bayes classifier , support vector machine , random forest , computer science , logistic regression , multilayer perceptron , perceptron , field (mathematics) , decision tree , statistical classification , algorithm , data mining , artificial neural network , mathematics , pure mathematics
Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.