
FEM-based comparative study of SQUARE & RHOMBIC INSERT machining performance during turning of AISI-D3 steel
Author(s) -
Anastasios Tzotzis,
AUTHOR_ID,
Nikolaos Efkolidis,
Gheorghe Oancea,
Panagiotis Kyratsis,
AUTHOR_ID,
AUTHOR_ID,
AUTHOR_ID
Publication year - 2021
Publication title -
international journal of modern manufacturing technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.197
H-Index - 7
ISSN - 2067-3604
DOI - 10.54684/ijmmt.2021.13.2.143
Subject(s) - machining , finite element method , square (algebra) , insert (composites) , mechanical engineering , work (physics) , structural engineering , materials science , engineering , mathematics , geometry
Nowadays, employment of the Finite Element Method (FEM) in machining simulation is a common practice to decrease development times and costs, as well as to investigate numerous parameters that affect machining processes. In the present work, the 3D modelling of AISI-D3 hard turning with both square and rhombic inserts is being presented by utilizing a commercially available Finite Element Analysis (FEA) software. Eighteen tests were carried out based on cutting conditions that are recommended for the used tools. Specifically, three levels of cutting speed (75m/min, 110m/min and 140m/min), three levels of feed (0.12mm/rev, 0.16mm/rev and 0.20mm/rev) and depth of cut equal to 0.40mm for all tests, were applied. In order to describe the complex factors that define the model, such as the friction forces, the heat transfer and the pressure due to contact between the tool and the workpiece, a number of acknowledged models were utilized. A comparison of the performance between the two types of tools was made with respect to the developed machining forces and temperature distribution on the workpiece. The findings of the investigation indicate that the specific square tools produce higher values of forces compared to the rhombic ones and approximately the same temperature patterns on the workpiece. The average increase on the produced cutting forces is about 26.4%.