z-logo
open-access-imgOpen Access
A Novel Points of Interest Selection Method For SVM-based Profiled Attacks
Author(s) -
Trần Ngọc Quý,
Nguyễn Hồng Quang
Publication year - 2021
Publication title -
khoa học và công nghệ trong lĩnh vực an toàn thông tin
Language(s) - Vietnamese
Resource type - Journals
ISSN - 2615-9570
DOI - 10.54654/isj.v2i12.117
Subject(s) - support vector machine , side channel attack , orthogonalization , computer science , artificial intelligence , algorithm , mathematics , cryptography
—Currently, one of the most powerful side channel attacks (SCA) is profiled attack. Machine learning algorithms, for example support vector machine (SVM), are currently used to improve the effectiveness of the attack. One issue of using SVM-based profiled attack is extracting points of interest (POIs), or features from power traces. Our work proposes a novel method for POIs selection of power traces based on the combining variational mode decomposition (VMD) and Gram-Schmidt orthogonalization (GSO). VMD is used to decompose the power traces into sub-signals (modes) and POIs selection process based on GSO is conducted on these sub-signals. As a result, the selected POIs are used for SVM classifier to conduct profiled attack. This attack method outperforms other profiled attacks in the same attack scenario. Experiments were performed on a trace data set collected from the Atmega8515 smart card with AES-128 run on the Sakura-G/W side channel evaluation board and the DPA Contest v4 dataset to verify the effectiveness of our method in reducing number of power traces for the attacks, especially with noisy power traces.Tóm tắt—Hiện nay, tấn công mẫu được xem là một trong những tấn công kênh kề (SCA) mạnh. Các thuật toán học máy, ví dụ như máy vector hỗ trợ (SVM), thường được sử dụng để nâng cao hiệu quả của tấn công mẫu. Một thách thức đối với tấn công mẫu sử dụng SVM là cần phải tìm được các điểm thích hợp (POI) hay các đặc trưng từ vết điện năng tiêu thụ. Công trình nghiên cứu này đề xuất một phương pháp mới đề tìm POI của vết điện năng tiêu thụ bằng cách kết hợp kỹ thuật phân tích mode biến phân (VMD) và quá trình trực giao hóa Gram-Schmidt (GSO). Trong đó, VMD được sử dụng để phân tách vết điện năng tiêu thụ thành các tín hiệu con còn gọi là VMD mode và việc lựa chọn POIs trên VMD mode này được thực hiện dựa trên quá trình GSO. Dựa trên phương pháp lựa chọn POIs này, chúng tôi đề xuất phương pháp tấn công mẫu sử dụng SVM có hiệu quả tốt hơn các tấn công mẫu khác ở cùng kịch bản tấn công. Các thí nghiệm tấn công được thực hiện trên tập dữ liệu được thu thập từ thẻ thông minh Atmega8515 cài đặt AES-128 chạy trên nền tảng thiết bị tấn công kênh kề Sakura-G/W và tập dữ liệu DPA Contest v4, để chứng minh tính hiệu quả của phương pháp của chúng tôi, trong việc giảm số lượng vết điện năng tiêu thụ cần cho cuộc tấn công, đặc biệt trong trường hợp các điện năng tiêu thụ có nhiễu.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here