
Multiplicity and concentration of solutions to a fractional p-Laplace problem with exponential growth
Author(s) -
Nguyen Van Thin
Publication year - 2022
Publication title -
annales fennici mathematici
Language(s) - English
Resource type - Journals
eISSN - 2737-114X
pISSN - 2737-0690
DOI - 10.54330/afm.115564
Subject(s) - multiplicity (mathematics) , laplace transform , mathematics , exponential function , exponential growth , combinatorics , function (biology) , compact space , mathematical analysis , mathematical physics , biology , evolutionary biology
In this paper, we study the Schrödinger equation involving \(\frac{N}{s}\)-fractional Laplace as follows
\(\varepsilon^{N}(-\Delta)_{N/s}^{s}u+V(x)|u|^{\frac{N}{s}-2}u=f(u)\) in \(\mathbb R^{N}\),
where \(\varepsilon\) is a positive parameter, \(N=ps\), \(s\in (0,1)\). The nonlinear function \(f\) has the exponential growth and potential function \(V\) is a continuous function satisfying some suitable conditions. Our problem lacks of compactness. By using the Ljusternik-Schnirelmann theory, we obtain the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom