
Note on an elementary inequality and its application to the regularity of p-harmonic functions
Author(s) -
Saara Sarsa
Publication year - 2021
Publication title -
annales fennici mathematici
Language(s) - English
Resource type - Journals
eISSN - 2737-114X
pISSN - 2737-0690
DOI - 10.54330/afm.112699
Subject(s) - elementary proof , harmonic function , mathematics , sobolev space , harmonic , elementary function , pure mathematics , inequality , function (biology) , space (punctuation) , sobolev inequality , combinatorics , mathematical analysis , physics , quantum mechanics , computer science , evolutionary biology , biology , operating system
We study the Sobolev regularity of \(p\)-harmonic functions. We show that \(|Du|^{\frac{p-2+s}{2}}Du\) belongs to the Sobolev space \(W^{1,2}_{\operatorname{loc}}\), \(s>-1-\frac{p-1}{n-1}\), for any \(p\)-harmonic function \(u\). The proof is based on an elementary inequality.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom