z-logo
open-access-imgOpen Access
Feasibility of bioethanol production from rice bran
Author(s) -
Francieli Begnini Siepmann,
Daneysa Lahis Kalschne,
Caroline Zabotti,
Éder Lisandro de Moraes Flores,
Cristiane Canan,
Eliane Colla
Publication year - 2020
Publication title -
semina. ciências agrárias
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.268
H-Index - 25
eISSN - 1679-0359
pISSN - 1676-546X
DOI - 10.5433/1679-0359.2020v41n6supl2p2951
Subject(s) - biofuel , bran , fermentation , food science , starch , chemistry , hydrolysis , ethanol fuel , bioreactor , microbiology and biotechnology , pulp and paper industry , biochemistry , biology , raw material , engineering , organic chemistry
Rice bran is a by-product of rice production with a high carbohydrate and starch content and the potential for bioethanol production by alcoholic fermentation. This article describes bioethanol production by Saccharomyces cerevisiae from hydrolyzed defatted rice bran (DRB) a rice by-product applying ultrasonic treatment and protease addition, as well as a sequential strategy of experimental design (SEED). In the first Central Composite Rotatable Design (CCRD), the temperature (25-30 °C) and inoculum concentration (0.5-50 g L-1) had positive effects on bioethanol production, while the effect of pH (4.0-6.0) was not significant. In the second CCRD, the temperature (28-35 °C) and inoculum concentration (10-70 g L-1) had negative and positive effects on bioethanol production (p < 0.05). Protease addition (15 µL g-1) increased the conversion of substrate into bioethanol by 76%. The optimized conditions for the production of 40.7 g L-1 bioethanol were a temperature of 31.5 °C and an inoculum concentration of 70 g L-1. Validation in a benchtop bioreactor produced 40.0 g L-1 of bioethanol from hydrolyzed DRB, and the SEED was characterized as a useful tool to improve bioethanol production from DRB. Furthermore, the DRB proved to be a by-product with great potential for bioethanol production, derived from alternative sources not commonly used in human food.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here