z-logo
open-access-imgOpen Access
Production efficiency of different crop rotations and tillage systems
Author(s) -
Andrzej Woźniak
Publication year - 2021
Publication title -
spanish journal of agricultural research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.337
H-Index - 36
eISSN - 2171-9292
pISSN - 1695-971X
DOI - 10.5424/sjar/2021194-17023
Subject(s) - tillage , straw , agronomy , yield (engineering) , crop , crop rotation , conventional tillage , crop yield , hordeum vulgare , mathematics , biology , poaceae , materials science , metallurgy
Aim of study: The production efficiency of crop rotations was evaluated based on the yield of the main crop (cereal grains and pea seeds) and yield of the by-product (straw) converted per cereal units (CU), and on total protein yield. Area of study: South-eastern Poland, Europe (2017-2019). Material and methods: The first order experimental factor included crop rotations: A): peas–durum wheat–spring barley; B): spring wheat–durum wheat–spring barley +oats; and C): spring barley–durum wheat–spring wheat. The second order experimental factor included tillage systems: CT, conventional tillage, RT, reduced tillage, and NT, no-tillage. Main results: The yield of pea seeds, cereal grains, and straw per CU was higher in crop rotation A than B (127.8 CU vs. 101.1 CU). Higher CU yields were also recorded in crop rotation C than B (by 18.9 CU). The tillage system had no effect on CU yield. The total protein yield was significantly higher in crop rotation A (2110.7 kg ha-1) than in crop rotations B (by 808.8 kg ha-1) and C (by 448.0 kg ha-1). A higher protein yield was also recorded in RT than in the NT system. Research highlights: The units used for CR assessment, i.e. CU and total protein yield, enable to reliably evaluate the production yield of both CRs and tillage systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here