z-logo
open-access-imgOpen Access
Improving the accuracy of wood moisture content estimation in four European softwoods from Spain
Author(s) -
Maria Conde Garcia,
Marta Conde García,
Juan Ignacio Fernández-Golfín Seco
Publication year - 2021
Publication title -
forest systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.455
H-Index - 25
eISSN - 2171-9845
pISSN - 2171-5068
DOI - 10.5424/fs/2021301-17798
Subject(s) - water content , softwood , scots pine , environmental science , moisture , gravimetric analysis , pulp and paper industry , soil science , mathematics , materials science , composite material , botany , pinus <genus> , chemistry , biology , geotechnical engineering , engineering , organic chemistry
Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.Keywords: Resistance-type moisture meter; species correction.Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here