Open Access
Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest
Author(s) -
Jingjing Wang,
Jun Cui,
Zhen Teng,
Wei Fan,
Mei Guan,
Xia Zhao,
Xiaoniu Xu
Publication year - 2019
Publication title -
forest systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.455
H-Index - 25
eISSN - 2171-9845
pISSN - 2171-5068
DOI - 10.5424/fs/2019283-15404
Subject(s) - tropical and subtropical moist broadleaf forests , environmental science , biomass (ecology) , microbial population biology , evergreen , ecosystem , subtropics , agronomy , water content , ecology , biology , genetics , geotechnical engineering , bacteria , engineering
Aim of the study: The aim of this study was to examine the effects of a 5-year simulated nitrogen (N) deposition on soil microbial biomass carbon (MBC), nitrogen (MBN), microbial community activity and diversity in subtropical old-growth forest ecosystems.Area of study: The study was conducted in forest located at subtropical forest in Anhui, east China.Material and methods: Three blocks with three fully randomized plots of 20 m × 20 m with similar forest community and soil conditions were established. The site applied ammonium nitrate (NH4NO3) to simulate N deposition (50 and 100 kg N ha−1 year −1). From three depths (0–10, 10–20 and 20–30 cm), were collected over four seasons (December, March, June and September), and then measured by community-level physiological profiles (CLPPs).Main results: N addition had no significant effect on MBC and MBN. The spatiotemporal variations in MBC and MBN were controlled by seasonality and soil depth. Soil microbial activities and diversity in the growing season (June and September) were apparently higher than the dormant season (March and December), there were significantly lower diversity indices found following N addition in September. However, N addition enhanced microbial activities and increased diversity indices in the dormant season. Redundancy analysis showed that pH, soil moisture, NO3--N and total phosphorus were the most important factors controlling the spatial pattern of microbial metabolic activity.Research highlights: These results suggest that soil microbial community function is more easily influenced than microbial biomass. The site has a trend of P-limited or near-N saturation, and will threaten the whole forest ecosystem with the increasing duration of N addition.Keywords: Nitrogen deposition; Seasonality; Soil microbial biomass; Microbial community; Subtropical old-growth forest.