z-logo
open-access-imgOpen Access
Phosphate Adsorption Capacity and Organic Matter Effect on Dynamics of P Availability in Upland Ultisol and Lowland Inceptisol
Author(s) -
Marsi,
Sabaruddin Sabaruddin
Publication year - 2013
Publication title -
jurnal tanah tropika/jurnal tanah tropika dan kualitas lingkungan
Language(s) - English
Resource type - Journals
eISSN - 2086-6682
pISSN - 0852-257X
DOI - 10.5400/jts.2011.v16i2.107-114
Subject(s) - inceptisol , ultisol , soil water , organic matter , chemistry , desorption , soil science , environmental science , adsorption , organic chemistry
Ultisols and Inceptisols were used to investigate the adsorption-desorption capacity of P and the effect of organic matter on the dynamics of P availability in tropical acid soils. The experiment consisted of two sub-experiments. Sub-experiment I was to study the adsorption-desorption capacity of Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Therefore, surface soils (0 to 30 cm) of each tested soil were treated with 0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 170, and 200 mg P kg-1 of soil. Sub-experiment II was to study the effects of organic matterapplication (0, 5, 10, and 15 Mg ha-1) on the dynamics of available P following 60d incubation under room temperature.P fertilizer application significantly affected water soluble-P (WSP) (p Upland Ultisol>fresh-water Lowland Inceptisol. OM application increased the BKP in all tested soils as compared to the control. Differences in pattern of soil available P dynamics over time were detected between upland soil and two lowland soils used in the current experiment.Keywords: Adsorption-desorption, Inceptisols, organic matter, Ultisols

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here