z-logo
open-access-imgOpen Access
A Mathematical Model for Predicting the Performance of Liquid Desiccant Wheel
Publication year - 2017
Publication title -
international journal of thermal and environmental engineering
Language(s) - English
Resource type - Journals
ISSN - 1923-7316
DOI - 10.5383/ijtee.13.02.004
Subject(s) - desiccant , air conditioning , materials science , cooling capacity , humidity , coefficient of performance , cooling load , latent heat , relative humidity , mechanical engineering , environmental science , mechanics , automotive engineering , thermodynamics , composite material , engineering , heat exchanger , heat pump , physics
The liquid desiccant cooling system is found to be a good alternative of conventional air conditioning system for better control of both latent and sensible loads. The major component of a liquid desiccant cooling system is desiccant dehumidifier which controls the latent cooling load. In this paper a mathematical model for rotary type liquid desiccant dehumidifier commonly known as desiccant wheel has been presented. The desiccant wheel has a cylindrical shape with a number of identical narrow circular slots distributed uniformly over the rotor cross section. The slots are filled with a porous medium carrying the solution of liquid desiccant, to make the absorbing surface. The absorption and regeneration performance of the desiccant dehumidifier is discussed in this paper for different operating conditions. The wheel performance curves which help to determine the air outlet conditions and coefficient of performance (COP) of the system are drawn for a wide range of wheel thickness (0.06-0.6m), air mass flux (1-8 kg/m2 .s), and regeneration temperature (60- 85o C). A reduction of about 30% in outlet humidity ratio is observed with an increase in the wheel thickness from 0.06 to 0.2m. The computed results show that better supply air conditions can be obtained to provide human thermal comfort in the hot and humid climate with effectiveness of the system largely dependent on air flow rate, wheel thickness and humidity ratio of process air.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here