
A Study of Spark Ignition Engine Fueled with Methanol and Ethanol Fuel Blends with Iso-Octane
Publication year - 2014
Publication title -
international journal of thermal and environmental engineering
Language(s) - English
Resource type - Journals
ISSN - 1923-7316
DOI - 10.5383/ijtee.08.01.004
Subject(s) - octane rating , spark ignition engine , gasoline , thermal efficiency , mean effective pressure , ignition system , brake specific fuel consumption , materials science , automotive engineering , octane , waste management , environmental science , chemistry , internal combustion engine , combustion , compression ratio , thermodynamics , engineering , organic chemistry , physics
Alternative fuels are derived from resources other than petroleum. The benefit of these fuels is that they emit less air pollutant compare to gasoline and most of them are more economically beneficial compared to oil and they are renewable. In addition, ethanol has higher evaporation heat, octane number and flammability temperature therefore it has positive influence on engine performance and reduces exhaust emissions. In this study, the effects of unleaded iso-octane, unleaded isooctane–ethanol blend (E5) and iso-octane-methanol (M5) blends on engine performance are investigated experimentally in a single cylinder fourstroke spark-ignition engine at a constant 8 Kg load. The engine speed was changed from 1100 to 1800 rpm. The results of the engine test showed that ethanol addition to unleaded iso-octane increases the value of IP, FP and IMEP with E5 fuel. The results also showed that the indicated power, brake power, friction power, indicated mean effective pressure, torque, exhaust temperature, and thermal efficiency increases with the increase in engine speed at a constant load of 8 Kg for E5, M5 and isooctane fuels. Thermal efficiency was maximum for E5 fuel (38.13%) at a speed of 1750 rpm.