
Deep learning aplicado para la detección de hemorragias y tumores cerebrales
Author(s) -
Mauricio Hidalgo,
Bryan Isaac Hayes Ortiz,
Ignacio Delgadillo Vera,
Manuel Goyo Escalona
Publication year - 2021
Publication title -
atoz
Language(s) - Portuguese
Resource type - Journals
ISSN - 2237-826X
DOI - 10.5380/atoz.v10i3.81284
Subject(s) - physics , computer science
Introdução: Um dos problemas que afeta a saúde no Chile refere-se às patologias cerebrais, à realização de exames e à longa espera pela obtenção dos resultados (atrasos no diagnóstico e tratamento). Atualmente, os exames são enviados ao exterior para serem processados e o tempo de espera jog contra o paciente. Dada a realidade, nosso documento propõe um modelo de deep learning para predição de imagens cerebrais que permite obter um diagnóstico prévio, mas não definitivo, em virtude de diminuir o tempo do processo e, se necessário, priorizar pacientes cuja vida estaria potencialmente em risco. Métodos: O desenvolvimento usou uma abordagem RAD iterativa e as imagens foram coletadas do Kaggle. Além disso, o conjunto de dados é redimensionado para normalizar o tamanho e geramos novas imagens usando “data augmentation”. As imagens foram processadas em redes convolucionais, investigando diferentes configurações da rede, seu otimizador e a função de ativação, até chegarmos a um modelo que consideramos razoável. Resultados: Com o modelo definitivo os resultados ultrapassam 80% de acertos nas previsões e descobrimos que separar patologias (hemorragias e tumores) foi fundamental para este resultado. Conclusões: alcançamos uma ferramenta de diagnóstico prévio, mas a pesquisa deve ser continuada em virtude do aumento da precisão. Uma próxima etapa é expandir o conjunto de dados com imagens de outras fontes e separar o modelo para analisar patologias de forma independente. Encorajamos mais investigação, uma vez que este tipo de apoio pode ajudar a salvar vidas.