
Classification of Heart conditions by Statistical Characterization of ECG Signal
Author(s) -
A. N. M. M. Haque,
Abdur Rahman
Publication year - 2020
Publication title -
the aiub journal of science and engineering
Language(s) - English
Resource type - Journals
eISSN - 2520-4890
pISSN - 1608-3679
DOI - 10.53799/ajse.v16i2.75
Subject(s) - signal (programming language) , pattern recognition (psychology) , artificial intelligence , electrocardiography , decision tree , feature (linguistics) , computer science , cardiology , medicine , linguistics , philosophy , programming language
Electrocardiogram (ECG) signal exhibits important distinctive feature for different cardiac issues. Automatic classification of electrocardiogram (ECG) signal can be used for primary detection of various heart conditions. Information about heart and ischemic changes of heart may be obtained from cleaned ECG signals. ECG signal has an important role in monitoring and diacritic of the heart patients. An accurate ECG classification is challenging problem. The accuracy often depends on proper selection of observing parameters as well as detection algorithms. Heart disorder means abnormal rhythm or abnormalities present in the heart. In this research work, we have developed a decision tree based algorithm to classify heart problems by utilizing the statistical signal characteristic (SSC) of an ECG signal. The proposed model has been tested with real ECG signal to successfully (60-98%) detect normal, apnea and ventricular tachyarrhythmia condition.