
Alternative fractional derivative operator on non-newtonian calculus and its approaches
Author(s) -
Mohammad Momenzadeh,
Sajedeh Norozpou
Publication year - 2021
Publication title -
nexo
Language(s) - English
Resource type - Journals
eISSN - 1995-9516
pISSN - 1818-6742
DOI - 10.5377/nexo.v34i02.11616
Subject(s) - fractional calculus , calculus (dental) , operator (biology) , mathematics , differential operator , time scale calculus , differential calculus , derivative (finance) , generalizations of the derivative , algebra over a field , pure mathematics , multivariable calculus , medicine , engineering , biochemistry , chemistry , dentistry , repressor , control engineering , transcription factor , financial economics , economics , gene
Nowadays, study on fractional derivative and integral operators is one of the hot topics of mathematics and lots of investigations and studies make their attentions in this field. Most of these concerns raised from the vast application of these operators in study of phenomena’s models. These operators interpreted by Newtonian calculus, however different types of calculi are existed and we introduce the fractional derivative operators focused on Bi-geometric calculus and also their fractional differential equations are studied.