z-logo
open-access-imgOpen Access
The norming set of a symmetric 3-linear form on the plane with the $l_1$-norm
Author(s) -
Sung Guen Kim
Publication year - 2021
Publication title -
new zealand journal of mathematics
Language(s) - English
Resource type - Journals
eISSN - 1179-4984
pISSN - 1171-6096
DOI - 10.53733/177
Subject(s) - norm (philosophy) , combinatorics , mathematics , discrete mathematics , philosophy , epistemology
An element $(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and$|T(x_1, \ldots, x_n)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$For $T\in {\mathcal L}(^n E),$ we define $${Norm}(T)=\Big\{(x_1, \ldots, x_n)\in E^n: (x_1, \ldots, x_n)~\mbox{is a norming point of}~T\Big\}.$$${Norm}(T)$ is called the {\em norming set} of $T$. We classify ${Norm}(T)$ for every $T\in {\mathcal L}_s(^3 l_{1}^2)$. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom