
Eccentric domination path decomposition polynomial of path and cycle
Author(s) -
Kalaiarasan K S Jinisha,
K. Lal Gipson
Publication year - 2022
Publication title -
international journal of health sciences (ijhs) (en línea)
Language(s) - English
Resource type - Journals
eISSN - 2550-6978
pISSN - 2550-696X
DOI - 10.53730/ijhs.v6ns1.6272
Subject(s) - path (computing) , decomposition , eccentric , polynomial , mathematics , decomposition method (queueing theory) , combinatorics , physics , discrete mathematics , mathematical analysis , computer science , chemistry , quantum mechanics , organic chemistry , programming language
A Decomposition (G1, G2…Gn) of G is said to be Eccentric Domination Path Decomposition (EDPD) if i) G admits EDD ii) Each Gi is a path (1 ≤ I ≤ n) iii) q(G1)=1 and q(G2) = 2 or 3 iv) q(Gi)=3i-5 or 3i-4 or 3i-3,i=3,4…n. In this paper we establish Eccentric Domination Path Decomposition polynomial of a G. In a particular, we investigate Eccentric domination Path Decomposition of Path and Cycle.