z-logo
open-access-imgOpen Access
Eccentric domination path decomposition polynomial of path and cycle
Author(s) -
Kalaiarasan K S Jinisha,
K. Lal Gipson
Publication year - 2022
Publication title -
international journal of health sciences (ijhs) (en línea)
Language(s) - English
Resource type - Journals
eISSN - 2550-6978
pISSN - 2550-696X
DOI - 10.53730/ijhs.v6ns1.6272
Subject(s) - path (computing) , decomposition , eccentric , polynomial , mathematics , decomposition method (queueing theory) , combinatorics , physics , discrete mathematics , mathematical analysis , computer science , chemistry , quantum mechanics , organic chemistry , programming language
A Decomposition (G1, G2…Gn) of G is said to be Eccentric Domination Path Decomposition (EDPD) if i) G admits EDD ii) Each Gi is a path (1 ≤ I ≤ n) iii) q(G1)=1 and q(G2) = 2 or 3 iv) q(Gi)=3i-5 or 3i-4 or 3i-3,i=3,4…n. In this paper we establish Eccentric Domination Path Decomposition polynomial of a G. In a particular, we investigate Eccentric domination Path Decomposition of Path and Cycle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here