
Space Charge Behavior of Oil-paper Insulation Thermally Aged under Different Temperatures and Moistures
Author(s) -
Yuanxiang Zhou,
Meng Huang,
Weijiang Chen,
Jin Fu
Publication year - 2015
Publication title -
journal of electrical engineering and technology/journal of electrical engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2093-7423
pISSN - 1975-0102
DOI - 10.5370/jeet.2015.10.3.1124
Subject(s) - space charge , ageing , moisture , materials science , arrhenius equation , composite material , charge (physics) , thermal , activation energy , thermodynamics , chemistry , physics , quantum mechanics , electron , genetics , biology
Moisture and high temperature are the most important factors that lead to the ageing of oil-paper insulation, but the research about space charge characteristics of oil-paper insulation does not take the combined effect of ambient temperature, moisture and thermal ageing into account. The pulsed electroacoustic (PEA) method was used to investigate the influence of moisture and temperature on space charge characteristics of oil paper at different ageing stages. The results showed that moisture could speed up formation of space charge in oil paper when water concentration was low, but the formation was restrained if the water concentration was high. At the beginning of thermal ageing, heterogeneous charge accumulation had predominance, but it gradually changed to homogeneous charge injection with ageing. It was believed that moisture concentration could speed up ageing and enhance charge accumulation on one hand, and accelerate or slow down the establishment speed of space charge on the other hand, therefore, charge accumulation type changed with ageing. The more seriously the oil-paper insulation was thermally aged, the deeper the trap energy level was, hence more space charge was trapped, which could be speeded up by increasing the ageing temperature, but the effect of ambient temperature did not fit the Arrhenius law.