z-logo
open-access-imgOpen Access
Analysis and Implementation of a New ZVS DC Converter for Medium Power Application
Author(s) -
BorRen Lin,
Tung-Yuan Shiau
Publication year - 2014
Publication title -
journal of electrical engineering and technology/journal of electrical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.226
H-Index - 27
eISSN - 2093-7423
pISSN - 1975-0102
DOI - 10.5370/jeet.2014.9.4.1296
Subject(s) - inductor , electrical engineering , transformer , inductance , converters , leakage inductance , electronic engineering , pulse width modulation , voltage , forward converter , engineering , boost converter
This paper presents a new zero voltage switching (ZVS) converter for medium power and high input voltage applications. Three three-level pulse-width modulation (PWM) circuits with the same power switches are adopted to clamp the voltage stress of MOSFETs at Vin/2 and to achieve load current sharing. Thus, the current stresses and power ratings of transformers and power semiconductors at the secondary side are reduced. The resonant inductance and resonant capacitance are resonant at the transition interval such that active switches are turned on at ZVS within a wide range of input voltage and load condition. The series-connected transformers are adopted in each three- level circuit. Each transformer can work as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer. Thus, no output inductor is needed at the secondary side. Three center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Compared with the conventional parallel three-level converters, the proposed converter has less switch counts. Finally, experiments based on a 1.44kW prototype are provided to verify the operation principle of proposed converter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here