
Optimal Hourly Scheduling of Community-Aggregated Electricity Consumption
Author(s) -
Amin Khodaei,
Mohammad Shahidehpour,
Jaeseok Choi
Publication year - 2013
Publication title -
journal of electrical engineering and technology/journal of electrical engineering and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.226
H-Index - 27
eISSN - 2093-7423
pISSN - 1975-0102
DOI - 10.5370/jeet.2013.8.6.1251
Subject(s) - electricity , computer science , mathematical optimization , scheduling (production processes) , payment , schedule , operations research , grid , demand response , integer programming , environmental economics , economics , engineering , mathematics , electrical engineering , geometry , world wide web , operating system
This paper presents the optimal scheduling of hourly consumption in a residential community (community, neighborhood, etc.) based on real-time electricity price. The residential community encompasses individual residential loads, communal (shared) loads, and local generation. Community-aggregated loads, which include residential and communal loads, are modeled as fixed, adjustable, shiftable, and storage loads. The objective of the optimal load scheduling problem is to minimize the community-aggregated electricity payment considering the convenience of individual residents and hourly community load characteristics. Limitations are included on the hourly utility load (defined as community-aggregated load minus the local generation) that is imported from the utility grid. Lagrangian relaxation (LR) is applied to decouple the utility constraint and provide tractable subproblems. The decomposed subproblems are formulated as mixed-integer programming (MIP) problems. The proposed model would be used by community master controllers to optimize the utility load schedule and minimize the community-aggregated electricity payment. Illustrative optimal load scheduling examples of a single resident as well as an aggregated community including 200 residents are presented to show the efficiency of the proposed method based on real-time electricity price.