z-logo
open-access-imgOpen Access
Projeto e análise de desempenho de um algoritmo iterativo para grandes grafos em um ambiente distribuído
Author(s) -
João Paulo Barbosa Nascimento,
Daniel de Oliveira Capanema,
Adriano C. M. Pereira
Publication year - 2019
Publication title -
revista brasileira de computação aplicada
Language(s) - Portuguese
Resource type - Journals
ISSN - 2176-6649
DOI - 10.5335/rbca.v11i1.8738
Subject(s) - humanities , physics , computer science , philosophy
Atualmente grandes volumes de dados são gerados e coletados por meio de sensores, dispositivos e redes sociais. A capacidade de lidar com grandes massas de dados tornou-se um importante fator para o sucesso de muitas organizações, exigindo, cada vez mais, a utilização de processamento paralelo e distribuído. Para auxiliar os desenvolvedores a projetar programas distribuídos, existem várias ferramentas (frameworks), como Apache Hadoop e Spark. Esses frameworks fornecem diversos parâmetros de configuração (por exemplo, o Hadoop tem mais de 200) e atribuir valores otimizados a todos eles não é uma tarefa simples. Este trabalho investiga a influência desses parâmetros no desempenho do Apache Hadoop, utilizando o algoritmo HEDA, um algoritmo iterativo que calcula métricas de centralidade em grandes grafos. A execução do HEDA em uma rede complexa é extremamente importante, pois existem várias medidas de centralidade que determinam a importância de um vértice dentro do grafo. Observou-se que, em alguns casos, a melhoria no tempo de execução atingiu aproximadamente 80% aplicando os valores propostos por este trabalho aos parâmetros de configuração do Hadoop. Além disso, foi possível aumentar em cinco vezes o uso dos processadores e melhorar consideravelmente a escalabilidade. O trabalho também apresenta os métodos aplicados para preparar, executar e analisar os experimentos, o que poderá auxiliar em novos estudos.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here