z-logo
open-access-imgOpen Access
Reconhecimento de padrões sazonais em colônias de abelhas Apis mellifera via clusterização
Author(s) -
Felipe Anderson O. Maciel,
Antonio Rafael Braga,
Ticiana Linhares Coelho da Silva,
Breno Magalhães Freitas,
Danielo G. Gomes
Publication year - 2018
Publication title -
revista brasileira de computação aplicada
Language(s) - Portuguese
Resource type - Journals
ISSN - 2176-6649
DOI - 10.5335/rbca.v10i3.8788
Subject(s) - humanities , physics , art
Na qualidade de principal agente polinizador, as abelhas são essenciais à produção de alimentos para o ser humano e para manutenção dos ecossistemas. Entre as culturas agrícolas utilizadas para o consumo humano, 75% dependem de polinização. Alinhando-se a uma preocupação atual com a sobrevivência das abelhas, este artigo visa identificar padrões de colônias de Apis mellifera a fim de auxiliar o apicultor no manejo e na manutenção de suas colmeias. Nosso método consistiu na aplicação de uma técnica de clusterização em dois datasets reais de colmeias em clima temperado com dados de temperatura, umidade e massa. Foram utilizados três datasets do portal HiveTool.net; dois deles divididos em período frio (outono e inverno) e período quente (primavera e verão) e o terceiro, para efeito comparativo, dividido em períodos mesclando estações frias e quentes: inverno e primavera, e verão e outono. A partir da aplicação do índice Calinski-Harabasz e do algoritmo K-means, identificamos padrões coerentes e associados às transições entre as estações do ano. Além disso, pudemos concluir que a colônia mais forte é mais eficiente ao tentar manter o microclima da colmeia durante o inverno.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom