
Dynamic Compression and Thermo-Physical Properties of Some Wood Particles in South Western Nigeria
Author(s) -
Mathew Adefusika Adekoya,
S. S. Oluyamo,
Olawale Ramon Bello
Publication year - 2017
Publication title -
pakistan journal of scientific and industrial research. series a: physical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 4
eISSN - 2223-2559
pISSN - 2221-6413
DOI - 10.52763/pjsir.phys.sci.60.2.2017.79.84
Subject(s) - thermal diffusivity , heat capacity , materials science , porosity , bulk density , compression (physics) , range (aeronautics) , composite material , environmental science , soil science , thermodynamics , physics , soil water
This study examines the dynamic compression and thermo-physical properties of some woodparticles obtained from Akure, south local government area, Ondo State, South Western Nigeria. Thesewood particles are of the species of Celtis zenkeri and Celtis philippensis of the Ulmaceae family. Thesamples were possessed into different particle sizes (300, 600 and 850 µm) and subjected to variedcompacting pressures (2.6-3.0 MPa). The density and specific heat capacity of the wood samples weredetermined using weighing displacement methods and temperature dependent model while the thermaldiffusivity was estimated from other thermal properties. The results revealed significant variation in thevalues of the specific heat capacity as a result of change in pressure for all the wood samples considered.The density of wood samples lies between 4.51×102 -7.32×102 kg/m3 and the specific heat capacity valuesobtained for the samples fall within the range of 1.28×103-1.33×103 J/kg/K. It was also noted that thethermal diffusivity obtained falls within the range of 1.37×10-7-2.10×10-7 m2/s for the wood materialsconsidered. However, the values of the densities, specific heat capacities and thermal diffusivities of thesamples were found to change as the compacting pressure increased due to decreased in porosity. Theimplication of the study is that the mate