
Experimental Investigation of Blending Acetylene with Iraqi LPG to Determine a Flame Stability Map
Author(s) -
Jameel Al-Naffakh,
Mohammed R. Al-Qassab,
Barzan Tarish Neamah,
Zaid Mohammed Hasan Al-Makhzoomi
Publication year - 2022
Publication title -
mağallaẗ al-buḥūṯ wa-al-dirāsāt al-nafṭiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2710-1096
pISSN - 2220-5381
DOI - 10.52716/jprs.v12i1.607
Subject(s) - flashback , mixing (physics) , combustion , acetylene , materials science , nozzle , mechanics , chemistry , thermodynamics , physics , organic chemistry , combustor , quantum mechanics
The difficult challenges facing the designers and engineers of combustion systems are the flame stability (flame stability map) represented by the limits of flashback and blow-off. In this study, acetylene gas was combined with Iraqi liquefied petroleum gas at rates (10% - 50%). The reason for choosing these two components is the low cost and ease of access to it. Where the flashback limits (critical velocity gradient) were obtained from (40-485) 1/sec, while the blow-off limits were (265-2510) 1/sec with a diameter of 25 cm for the burning nozzle diameter only for Iraqi LPG without mixing acetylene. While in the case of mixing 10% acetylene, the flashback limits (critical velocity gradient) were from (30-520) 1/sec and the blow-off limits (440-3985) 1/sec for the same diameter of the muzzle of 25 cm. Whereas, when mixing 30% of the acetylene, the flashback limits (critical velocity gradient) were from (55-575) 1/sec and the blow-off limits (570 - 4050) 1/sec. From the above three cases, noticed a relative expansion of the flame stability map for the flashback boundaries, while at the blow-off limits the amplitude was clear and large, which indicates the confidence in mixing acetylene with Iraqi LPG and obtaining a larger flame stability map. Thus, it stimulates its use in industrial fields and gas turbine power stations.