
Synthesis and Characterization of Co-Mo/γ-Alumina Catalyst from local Kaolin clay for Hydrodesulfurization of Iraqi Naphtha
Author(s) -
Nada Sadoon Ahmed zeki,
Sattar J. Hussein,
Khalifa K. Aoyed,
Saad Kareem Ibrahim,
Ibtissam K. Mehawee
Publication year - 2021
Publication title -
mağallaẗ al-buḥūṯ wa-al-dirāsāt al-nafṭiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2710-1096
pISSN - 2220-5381
DOI - 10.52716/jprs.v11i1.431
Subject(s) - naphtha , hydrodesulfurization , calcination , catalysis , nuclear chemistry , crystallinity , sulfuric acid , materials science , leaching (pedology) , raw material , chemistry , chemical engineering , metallurgy , organic chemistry , composite material , geology , soil science , engineering , soil water
This work deals with the hydrodesulfurization of three types of naphtha feedstocks; mixednaphtha (WN), heavy naphtha (HN) & light naphtha (LN) with a sulfur content of 1642.1,1334.9 & 709 ppm respectively, obtained from Missan refinery using prepared Co-Mo/γ-Al2O3catalyst. The Iraqi white kaolin was used as a starting material for the preparation of γ-Al2O3support, transferring kaolin to meta-kaolin was studied through calcination at differenttemperatures and durations, kaolin structure was investigated using X-Ray diffractiontechniques.High purity 94.83%. Crystalline γ-Al2O3 with a surface area of 129.91 m2/gm, pore volume0.9002 cm3/g was synthesized by extraction of Iraqi kaolin with H2SO4 at different acid to clayweight ratios, acid concentrations & leaching time. Ethanol was used as precipitating agent; theresultant gel was dried and calcined at 70OC, 10 hrs & 900 OC, 2 hrs respectively.The effects of different parameters on the average crystallinity and extraction % ofsynthesized γ-Al2O3 were studied like; acid: clay ratio, sulfuric acid concentration, leachingtime, leaching temperature & kaolin conversion to metakaolin. Characterization of prepared γ-Al2O3 & Co-Mo catalyst were achieved by X-ray diffraction, FTIR-spectra, texture properties& BET surface area, BJH N2 adsorption porosity, AFM, SEM, crush strength & XRF tests.
Co-Mo/ γ-Al2O3 catalyst with final loading 5.702 wt% and 21.45 wt% of Co and Mo oxidesrespectively was prepared by impregnation methods.The activity of prepared Co-Mo/γ-Al2O3 catalyst after moulding to be tested forhydrodesulfurization (HDS) of naphtha feedstock W.N, H.N & L.N was performed using apilot hydrotreating unit at petroleum research & development centre, at different operatingconditions. Effects of temperature, LHSV, pressure, time & pore size distribution were studied,the best percentage of sulfur removal is increased with decreasing LHSV to 2 hr-1 as a generaltrend to be 89.71, 99.72, 99.20 % at 310oC for the whole naphtha, heavy naphtha and lightnaphtha feedstocks respectively, at 34 bar pressure and 200/200 cm3/cm3 H2/HC ratio.