
Riesz triple probabilisitic of almost lacunary ces$\acute{A}$ro $C_{111}$ statistical convergence of $\chi^{3}$ defined by a Musielak Orlicz function
Author(s) -
_ Vandana,
_ Deepmala,
N. Subramanian,
Vishnu Narayan Mishra
Publication year - 2018
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.v36i4.32870
Subject(s) - lacunary function , mathematics , probabilistic logic , metric (unit) , metric space , convergence (economics) , function (biology) , pure mathematics , discrete mathematics , statistics , operations management , evolutionary biology , economics , biology , economic growth
In this paper we study the concept of almost lacunary statistical Ces$\acute{a}$ro of $\chi^{3}$ over probabilistic $p-$ metric spaces defined by Musielak Orlicz function. Since the study of convergence in PP-spaces is fundamental to probabilistic functional analysis, we feel that the concept of almost lacunary statistical Ces$\acute{a}$ro of $\chi^{2}$ over probabilistic $p-$ metric spaces defined by Musielak in a PP-space would provide a more general framework for the subject