z-logo
open-access-imgOpen Access
On Zweier generalized difference ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
Author(s) -
Bipan Hazarika,
Karan Tamanag
Publication year - 2017
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.v35i2.29077
Subject(s) - mathematics , ideal (ethics) , sequence (biology) , pure mathematics , convex function , regular polygon , matrix (chemical analysis) , algebraic number , limit of a sequence , sequence space , locally convex topological vector space , space (punctuation) , function (biology) , class (philosophy) , operator (biology) , function space , combinatorics , mathematical analysis , topological space , limit (mathematics) , banach space , computer science , geometry , philosophy , materials science , repressor , artificial intelligence , chemistry , composite material , genetics , biology , operating system , biochemistry , epistemology , evolutionary biology , transcription factor , gene
Let $\mathbf{M}=(M_k)$ be a Musielak-Orlicz function. In this article, we introduce a new class of ideal convergent sequence spaces defined by Musielak-Orlicz function, using an infinite matrix, and a generalized difference matrix operator $B_{(i)}^{p}$ in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We obtainsome relations related to these sequence spaces

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here