
On Zweier generalized difference ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
Author(s) -
Bipan Hazarika,
Karan Tamanag
Publication year - 2017
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.v35i2.29077
Subject(s) - mathematics , ideal (ethics) , sequence (biology) , pure mathematics , convex function , regular polygon , matrix (chemical analysis) , algebraic number , limit of a sequence , sequence space , locally convex topological vector space , space (punctuation) , function (biology) , class (philosophy) , operator (biology) , function space , combinatorics , mathematical analysis , topological space , limit (mathematics) , banach space , computer science , geometry , philosophy , materials science , repressor , artificial intelligence , chemistry , composite material , genetics , biology , operating system , biochemistry , epistemology , evolutionary biology , transcription factor , gene
Let $\mathbf{M}=(M_k)$ be a Musielak-Orlicz function. In this article, we introduce a new class of ideal convergent sequence spaces defined by Musielak-Orlicz function, using an infinite matrix, and a generalized difference matrix operator $B_{(i)}^{p}$ in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We obtainsome relations related to these sequence spaces