
SOME DIFFERENTIAL IDENTITIES IN PRIME $GAMMA$ RINGS
Author(s) -
Mohammad Ashraf,
Malik Rashid Jamal
Publication year - 2014
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.v32i1.13457
Subject(s) - prime (order theory) , mathematics , ring (chemistry) , differential (mechanical device) , alpha (finance) , combinatorics , commutative ring , ideal (ethics) , prime ideal , pure mathematics , discrete mathematics , physics , commutative property , chemistry , construct validity , statistics , organic chemistry , thermodynamics , psychometrics , philosophy , epistemology
Let $M$ be a prime $\Gamma$-ring and $U$ be a nonzero ideal of $M$.An additive mapping $d:M\longrightarrow M,$ where $M$ is a $\Gamma$-ring, is called a derivation if for any $a,b\in M$ and$\alpha \in \Gamma$, $d(a\alpha b)=d(a)\alpha b+a\alpha d(b)$. In this paper, we investigate the commutativity of prime $\Gamma$-ring satisfying certain differential identities