z-logo
open-access-imgOpen Access
On the sum of the powers of $ A_\alpha $ eigenvalues of graphs and $ A_\alpha $-energy like invariant
Author(s) -
S. Pirzada,
Bilal Ahmad Rather,
Rezwan Ul Shaban,
T. A. Chishti
Publication year - 2022
Publication title -
boletim da sociedade paranaense de matemática
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.347
H-Index - 15
eISSN - 2175-1188
pISSN - 0037-8712
DOI - 10.5269/bspm.52469
Subject(s) - combinatorics , eigenvalues and eigenvectors , graph , invariant (physics) , mathematics , simple graph , alpha (finance) , beta (programming language) , discrete mathematics , physics , mathematical physics , quantum mechanics , computer science , construct validity , statistics , programming language , psychometrics
For a connected simple graph $ G $ with $ A_{\alpha} $ eigenvalues $ \rho_{1}\geq\rho_{2}\geq\dots\geq\rho_{n} $ and a real number $\beta $, let $ S_{\beta}^{\alpha}(G) =\sum\limits_{i=1}^{n}\rho_{i}^{\beta}$ be the sum of the $ \beta^{th} $ powers of the $ A_{\alpha} $ eigenvalues of graph $ G $. In this paper, we obtain various bounds for the graph invariant $ S_{\beta}^{\alpha}(G) $ in terms of different graph parameters. As a consequence, we obtain the bounds for the quantity $ IE^{A_{\alpha}}(G)= S_{\frac{1}{2}}^{\alpha}(G),$ the $ A_{\alpha} $ energy-like invariant of the graph $ G .$

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom